Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mini Rev Med Chem ; 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37691188

ABSTRACT

BACKGROUND: Neurodegenerative diseases (NDs) have become a common and growing cause of mortality and morbidity worldwide, especially in older adults. The natural flavonoids found in fruits and vegetables have been shown to have therapeutic effects against many diseases, including NDs; however, in general, flavonoids have limited bioavailability to the target cells. One promising strategy to increase bioavailability is to entrap them in nanocarriers. OBJECTIVE: This article aims to review the potential role of nanocarriers in enhancing the anti-neuroinflammatory efficacy of flavonoids in experimentally induced ND. METHODS: A literature search was conducted in the scientific databases using the keywords "neurodegenerative", "anti-neuroinflammatory", "dietary flavonoids," "nanoparticles", and "therapeutic mechanisms". RESULTS: A total of 289 articles were initially identified, of which 45 articles reported on flavonoids. After completion of the selection process, five articles that met the criteria of the review were selected for analysis. Preclinical studies identified in this review showed that nanoencapsulated flavonoids attenuated cognitive impairment and seizure, improved behavioral patterns, and reduced levels of astrocytes. Importantly, they exhibited strong antioxidant properties, increasing the levels of antioxidant enzymes and reducing oxidative stress (OS) biomarkers. Moreover, nanocarrier-complexed flavonoids decreased the levels of the pro-inflammatory cytokines, interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α), by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nod-like receptor protein 3 inflammasome activation (NLRP3). They also had remarkable effects on important ND-related neurotransmitters, improved cognitive function via cholinergic neurotransmission, and increased prefrontal cortical and hippocampal norepinephrine (NE) and 5-hydroxytryptamine (5-HT). CONCLUSION: Nanoencapsulated flavonoids should, therefore, be considered a novel therapeutic approach for the treatment of NDs.

2.
J Pharm Anal ; 13(12): 1408-1428, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38223446

ABSTRACT

This review aims to identify in vivo studies investigating the potential of plant substances and their natural molecules in managing inflammatory bowel disease (IBD). Specifically, the objective is to examine the impact of these substances on interleukins and other key inflammatory signaling markers. Relevant articles published up to December 2022 were identified through a search of the PubMed, Scopus, Web of Science, and Embase databases. The search used keywords including "inflammatory bowel disease", "medicinal plants", "natural molecules", "anti-inflammatory", and "ulcerative colitis", and identified 1,878 potentially relevant articles, of which 89 were included in this review after completion of the selection process. This study provides preclinical data on natural products (NPs) that can potentially treat IBD, including ulcerative colitis. The main actions of these NPs relate to their effects on nuclear factor kappa B (NF-κB), the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway, the regulation of T helper 17/regulatory T cells balance, and oxidative stress. The ability of these NPs to inhibit intestinal inflammation appears to be dependent on lowering levels of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1ß, and IL-17, via the Jun N-terminal kinase (JNK)1, NF-κß-p65, and STAT3 pathways. In addition, NPs were shown to reduce oxidative stress and the severity of ulcerative colitis, as well as increase the activity of antioxidant enzymes. These actions suggest that NPs represent a promising treatment for IBD, and potentially have greater efficacy and safety than current treatments.

3.
Phytomedicine ; 100: 154038, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35358934

ABSTRACT

BACKGROUND: Cancer is a group of diseases characterized by abnormal cell growth and proliferation. Natural products are a potentially important source for bioactive phytochemicals in the management of cancer, which regulate a broad range of biological events via the modulation of interleukins (ILs), pro- and anti-inflammatory modulators, and other cancer hallmark-mediated signaling pathways. PURPOSE: To systematically review the literature to identify in vivo studies investigating the anticancer properties of medicinal plants and natural molecules as modulators of ILs and their related pro- and anti-inflammatory signaling markers in tumor-bearing animals. METHODS: Articles published in English were searched, without any constraint in respect of countries. The electronic databases PubMed, Embase, Scopus, and Web of Science were used for the literature search for studies published between January 2010 and January 2022. The search terms used included medicinal plants, anticancer, antineoplasic agent, ILs, cytokine, and their combinations. A manual search to detect any articles not found in the databases was also made. The identified studies were then critically reviewed and relevant data were extracted and summarized. RESULTS: Natural products were found to modulate ILs, including IL-1ß, IL-2, IL-4, IL-6, IL-8, IL-18, IL-23, and IL-12, and interferon gamma; increase tissue inhibitor metalloprotease; decrease vascular endothelial growth factor, tumor necrosis factor alpha, granulocyte macrophage colony-stimulating factor, and nuclear factor kappa B; augment immunity by increasing the major histocompatibility complexes II and CD4+, cluster of differentiation 8 + T cell and class II trans-activator expression; and heighten the action of antioxidant enzymes, which are involved in the detoxification of free radicals and reactive oxygen species. CONCLUSION: Natural products discussed in this review show great potential to regulate ILs and weaken associated pro- and anti-inflammatory signaling markers in tumor-bearing animals. Flavonoids, polyphenols, polysaccharides, alkaloids and tannins are important phytochemicals in the modulation of ILs, especially pro-inflammatory ones. However, in terms of future research, the importance of clinical trials to investigate their beneficial properties should be warranted.


Subject(s)
Biological Products , Neoplasms , Plants, Medicinal , Animals , Anti-Inflammatory Agents/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , Cytokines/metabolism , Inflammation Mediators/metabolism , Interleukins/metabolism , Neoplasms/drug therapy , Plants, Medicinal/metabolism , Vascular Endothelial Growth Factor A
4.
Phytomedicine ; 93: 153766, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34624807

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease causing severe locomotor disability and deterioration in the quality of life. Existing treatments for RA mainly focus on the use of immunomodulators and the suppression of synovial inflammation, and many have significant side effects. Medicinal plants are regarded as important alternative sources for treating RA. PURPOSE: This review summarizes the bioactive compounds of medicinal plants, which have been shown to modulate the immune response by regulating interleukins in vitro and in vivo experimental models, and that may be promising substances for use in the treatment of RA. METHODS: Articles on natural products used for the management of arthritis were retrieved from PubMed, Embase, Scopus, and Web of Science through electronic and manual search in English. In total, 576 publications were identified, and 34 were included in this systematic review. RESULTS: Two articles presented findings on the role of natural components in the treatment of arthritis in both in vitro and in vivo studies. Nine reports defined the role of plant-derived natural molecules in the treatment of arthritis using cell lines, and 27 in vivo studies assessed the anti-arthritic efficacy and immunomodulation effects of phytoconstituents on interleukin production and inflammatory responses. CONCLUSION: This systematic review broadly reports that, in contrast to other classes of phytochemicals, flavonoids have the greatest therapeutic potential against arthritis by modulating the expression of pro-inflammatory TNF-α, IL-1ß, IL-6, IL-8, and IL-17, as well as anti-inflammatory IL-2 and IL-10 cytokines, through the suppression of dynamic inflammatory biomarkers.


Subject(s)
Arthritis, Rheumatoid , Biological Products , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Biological Products/pharmacology , Biological Products/therapeutic use , Cytokines , Humans , Quality of Life
5.
Phytomedicine ; 73: 152854, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-31036393

ABSTRACT

BACKGROUND: Asthma, the main inflammatory chronic condition affecting the respiratory system, is characterized by hyperresponsiveness and reversible airway obstruction, recruitment of inflammatory cells and excessive production of mucus. Cytokines as biochemical messengers of immune cells, play an important role in the regulation of allergic inflammatory and infectious airway processes. Essential oils of plant origin are complex mixtures of volatile and semi volatile organic compounds that determine the specific aroma of plants and are categorized by their biological activities. PURPOSE: We reviewed whether essential oils and their bioactive compounds of plant origin could modulate cytokines' immune responses and improve asthma therapy in experimental systems in vitro and in vivo. METHODS: Electronic and manual search of articles in English available from inception up to November 2018 reporting the immunomodulatory activity of essential oils and their bioactive compounds for the management of asthma. We used PubMed, EMBASE, Scopus and Web of Science. Publications reporting preclinical experiments where cytokines were examined to evaluate the consequence of anti-asthmatic therapy were included. RESULTS: 914 publications were identified and 13 were included in the systematic review. Four articles described the role of essential oils and their bioactive compounds on bronchial asthma using cell lines; nine in vivo studies evaluated the anti-inflammatory efficacy and immunomodulating effects of essential oil and their secondary metabolites on cytokines production and inflammatory responses. The most important immunopharmacological mechanisms reported were the regulation of cytokine production, inhibition of reactive oxygen species accumulation, inactivation of eosinophil migration and remodeling of the airways and lung tissue, modulation of FOXP3 gene expression, regulation of inflammatory cells in the airways and decreasing inflammatory mediator expression levels. CONCLUSION: Plant derived essential oils and related active compounds have potential therapeutic activity for the treatment of asthma by modulating the release of pro-inflammatory (TNF-α, IL-1ß, IL-8), Th17 (IL-17), anti-inflammatory (IL-10), Th1 (IFN-γ, IL-2, IL-12) and Th2 (IL-4, IL-5, IL-6, IL-13) cytokines and the suppression of inflammatory cell accumulation.


Subject(s)
Anti-Asthmatic Agents/pharmacology , Cytokines/metabolism , Immunologic Factors/pharmacology , Oils, Volatile/pharmacology , Animals , Anti-Asthmatic Agents/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Asthma/drug therapy , Humans , Hypersensitivity/drug therapy , Immunologic Factors/chemistry , Interleukin-17/metabolism , Lung/drug effects , Lung/pathology , Oils, Volatile/chemistry , Th17 Cells/drug effects
6.
Food Chem Toxicol ; 116(Pt B): 86-99, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29614383

ABSTRACT

Citrus sinensis (L.) Osbeck is extensively cultivated worldwide and one of the most consumed fruits in the world. We evaluated the therapeutic properties of the methanol extract from Citrus sinensis fruit peel (CSMe) in high-fat diet-fed streptozotocin-induced insulin-resistant diabetic rats. Body weight, food intake, and water consumption were analysed. Biochemical and molecular biologic indices, and the expression of insulin receptor-induced signalling molecules were assessed to identify possible mechanisms. In addition, we conducted histology of pancreatic and adipose tissues. UHPLC-MS/MS analysis showed the presence of 17 dietary phenolics at substantial concentrations. High-fat diet-fed streptozotocin-induced diabetic rats administered CSMe (50 and 100 mg/kg) had reduced fasting blood glucose (56.1% and 55.7%, respectively) and plasma insulin levels (22.9% and 32.7%, respectively) compared with untreated diabetic control rats. CSMe reversed the biochemical abnormalities in diabetic rats, showed cytoprotective activity, and increased the intensity of the positive immunoreactions for insulin in pancreatic islets. CSMe treatment increased the expression of PPARγ in the adipose tissue and signalling molecules GLUT4 and insulin receptor. Our data suggest that CSMe could optimize glucose uptake of adipose tissues through the insulin-dependent signalling cascade mechanism and it should be investigated in the management of individuals with type 2 diabetes mellitus.


Subject(s)
Citrus/chemistry , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Insulin Resistance , Insulin/pharmacology , Phenols/analysis , Plant Extracts/pharmacology , Plant Structures/chemistry , Signal Transduction/drug effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Chromatography, High Pressure Liquid , Creatinine/blood , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/physiopathology , Glucose Tolerance Test , Hypoglycemic Agents/therapeutic use , Insulin/blood , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Liver Function Tests , Male , Obesity/drug therapy , Obesity/physiopathology , Phenols/pharmacology , Plant Extracts/therapeutic use , Rats, Wistar , Receptor, Insulin/metabolism , Streptozocin , Tandem Mass Spectrometry
7.
Eur J Pharmacol ; 745: 201-16, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25445038

ABSTRACT

In this study, the therapeutic efficacy of gallic acid from Cyamopsis tetragonoloba (L.) Taub. (Fabaceae) beans was examined against high-fat diet fed-streptozotocin-induced experimental type 2 diabetic rats. Molecular-dockings were done to determine the putative binding modes of gallic acid into the active sites of key insulin-signaling markers. Gallic acid (20 mg/kg) given to high-fat diet fed-streptozotocin-induced rats lowered body weight gain, fasting blood glucose and plasma insulin in diabetic rats. It further restored the alterations of biochemical parameters to near normal levels in diabetic treated rats along with cytoprotective action on pancreatic ß-cell. Histology of liver and adipose tissues supported the biochemical findings. Gallic acid significantly enhanced the level of peroxisome proliferator-activated receptor γ (PPARγ) expression in the adipose tissue of treated rat compared to untreated diabetic rat; it also slightly activated PPARγ expressions in the liver and skeletal muscle. Consequently, it improved insulin-dependent glucose transport in adipose tissue through translocation and activation of glucose transporter protein 4 (GLUT4) in phosphatidylinositol 3-kinase (PI3K)/phosphorylated protein kinase B (p-Akt) dependent pathway. Gallic acid docked with PPARγ; it exhibited promising interactions with the GLUT4, glucose transporter protein 1 (GLUT1), PI3K and p-Akt. These findings provided evidence to show that gallic acid could improve adipose tissue insulin sensitivity, modulate adipogenesis, increase adipose glucose uptake and protect ß-cells from impairment. Hence it can be used in the management of obesity-associated type 2 diabetes mellitus.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Gallic Acid/pharmacology , Glucose Transporter Type 4/metabolism , Insulin Resistance , PPAR gamma/agonists , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/pathology , Diet, High-Fat/adverse effects , Gallic Acid/administration & dosage , Gallic Acid/chemistry , Gene Expression/drug effects , Glucose/metabolism , Glucose Transporter Type 4/genetics , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacology , Male , Models, Molecular , PPAR gamma/chemistry , PPAR gamma/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects , Streptozocin/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...